Document
Unraveling ice multiplication in winter orographic clouds via in-situ observations, remote sensing and modeling

Unraveling ice multiplication in winter orographic clouds via in-situ observations, remote sensing and modeling

Vergara - Temprado , J.et al .strong control of Southern Ocean cloud reflectivity by ice - nucleate particle .Proc.Natl Acad.Sci.USA 115, 2687–2692 (

Related articles

Best VPN for Firestick 2024 [Top Free & Paid VPNs For Streaming] CyberGhost VPN Review: Features, Pricing, Pros & Cons 10 Secrets Revealed from Rodney St Cloud’s Hidden Camera Workout Sign up for Trend Cloud One Ultimate Solution For 1TB Free Cloud Storage
  1. Vergara – Temprado , J.et al .strong control of Southern Ocean cloud reflectivity by ice – nucleate particle .Proc.Natl Acad.Sci.USA 115, 2687–2692 ( 2018 ) .

    article  
    CAS  

    Google Scholar  

  2. Tan, I.& Storelvmo, T.Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change.geophy .Res .Lett. 46, 2894–2902 (2019).

    Article 

    Google Scholar  

  3. Heymsfield, A.J.et al.Contributions of the Liquid and Ice Phases to Global Surface Precipitation: Observations and Global Climate Modeling.J.Atmos .Sci . 77, 2629–2648 ( 2020 ) .

    Article 

    Google Scholar  

  4. Mülmenstädt, J., Sourdeval, O., Delanoë, J.& Quaas, J.Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals.geophy .Res .Lett. 42, 6502–6509 (2015).

    Article 

    Google Scholar  

  5. Korolev, A.& Milbrandt, J.How Are Mixed-Phase Clouds Mixed? geophy .Res .Lett.49, e2022GL099578 ( 2022 ) .

  6. Field, P.R.et al.Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale.Q.J.R.Meteorol.Soc. 130, 1877–1904 ( 2004 ) .

    Article 

    Google Scholar  

  7. Bergeron, T.On the physics of clouds and precipitation.Report, International Union of Geodesy and Geophysics, https://doi.org/10.1038/174957a0 (1935).

  8. Findeisen, W.Die kolloidmeteorologischen vorgänge bei der niederschlagsbildung.Meteorol.Z. 55, 121–133 ( 1938 ) .

    Google Scholar  

  9. Wegener, A.Thermodynamik der Atmosphäre, 331 pp.(Ger.Barth,Leipzig, 1911).

  10. Matus, A.V.& L’Ecuyer, T.S.The role of cloud phase in Earth’s radiation budget.J.Geophys.Res. 122, 2559–2578 (2017).

    Article 

    Google Scholar  

  11. McCoy, D.T., Tan, I., Hartmann, D.L., Zelinka, M.D.& Storelvmo, T.On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs.J.Adv.Model.Earth Syst. 8, 650–668 (2016).

    Article 

    Google Scholar  

  12. Zelinka, M.D.et al.Causes of Higher Climate Sensitivity in CMIP6 Models.geophy .Res .Lett. 47, 1–12 (2020).

    Article 

    Google Scholar  

  13. Hoose, C.& Möhler, O.Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments.Atmos.Chem.Phys. 12, 9817–9854 (2012).

  14. Murray, B.J., O’Sullivan, D., Atkinson, J.D.& Webb, M.E.Ice nucleation by particles immersed in supercooled cloud droplets.Chem.Soc.Rev. 41, 6519–6554 ( 2012 ) .

    article  
    CAS  

    Google Scholar  

  15. Kanji, Z.A.et al.Overview of Ice Nucleating Particles.Meteorol.Monogr. 58, 1.1–1.33 (2017).

    Article 

    Google Scholar  

  16. Field, P.R.et al.Chapter 7.Secondary Ice Production – current state of the science and recommendations for the future.Meteorol.Monogr. 58, 7.1–7.20 (2017).

    Google Scholar  

  17. Korolev, A.& Leisner, T.Review of experimental studies of secondary ice production.Atmos.Chem.Phys. 20, 11767–11797 (2020).

  18. Huang, Y.et al.Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production.Atmos.Chem.Phys. 22, 2365–2384 (2022).

    article  
    CAS  

    Google Scholar  

  19. Young, G.et al.Radiative Effects of Secondary Ice Enhancement in Coastal Antarctic Clouds.geophy .Res .Lett. 46, 2312–2321 (2019).

    Article 

    Google Scholar  

  20. Grzegorczyk, P.et al.Fragmentation of ice particles: laboratory experiments on graupel-graupel and graupel-snowflake collisions.Atmos.Chem.Phys. 23, 13505–13521 (2023).

    article  
    CAS  

    Google Scholar  

  21. Kleinheins, J., Kiselev, A., Keinert, A., Kind, M.& Leisner, T.Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles.J.Atmos .Sci . 78, 1–28 (2021).

    Google Scholar  

  22. Lasher-Trapp, S.et al.A multisensor investigation of rime splintering in tropical maritime cumuli.J.Atmos .Sci . 73, 2547–2564 (2016).

    Article 

    Google Scholar  

  23. Lawson, R.P., Woods, S.& Morrison, H.The microphysics of ice and precipitation development in tropical cumulus clouds.J.Atmos .Sci . 72, 2429–2445 (2015).

    Article 

    Google Scholar  

  24. Järvinen, E.et al.Evidence for Secondary Ice Production in Southern Ocean Maritime Boundary Layer Clouds.J.Geophys.Res.Atmos. 127, 1–31 ( 2022 ) .

    Article 

    Google Scholar  

  25. Billault-Roux, A.-C.et al.Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study.Atmos.Chem.Phys. 23, 10207–10234 (2023).

    article  
    CAS  

    Google Scholar  

  26. Grazioli, J.et al.Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014.Atmos.Chem.Phys. 15, 13787–13802 ( 2015 ) .

    article  
    CAS  

    Google Scholar  

  27. Luke, E.P., Yang, F., Kollias, P., Vogelmann, A.M.& Maahn, M.New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic.Proc.Natl Acad.Sci.USA 118, 1–9 (2021).

    Article 

    Google Scholar  

  28. Li, H., Möhler, O., Petäjä, T.& Moisseev, D.Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: Environmental conditions and the relevance to secondary ice production.Atmos.Chem.Phys. 21, 14671–14686 ( 2021 ) .

    article  
    CAS  

    Google Scholar  

  29. Atlas, R.L.et al.How Well Do Large-Eddy Simulations and Global Climate Models Represent Observed Boundary Layer Structures and Low Clouds Over the Summertime Southern Ocean? J.Adv.Model.Earth Syst. 12, 1–25 ( 2020 ) .

    Article 

    Google Scholar  

  30. Sotiropoulou, G.et al.Secondary ice production in summer clouds over the Antarctic coast: An underappreciated process in atmospheric models.Atmos.Chem.Phys. 21, 755–771 (2021).

    article  
    CAS  

    Google Scholar  

  31. Zhao, X.& Liu, X.Global Importance of Secondary Ice Production.geophy .Res .Lett. 48, 1–11 (2021).

    CAS 

    Google Scholar  

  32. Hoose, C.Another Piece of Evidence for Important but Uncertain Ice Multiplication Processes.AGU Adv. 3, 2021–2023 (2022).

    Article 

    Google Scholar  

  33. Hallett, J.& Mossop, S.C.Production of secondary ice particles during the riming process.Nature 249, 26–28 (1974).

    article  
    CAS  

    Google Scholar  

  34. Heymsfield, A.J.& Mossop, S.C.Temperature dependence of secondary ice crystal production during soft hail growth by riming.Q.J.R.Meteorol.Soc. 110, 765–770 (1984).

    Article 

    Google Scholar  

  35. Phillips, V.T.J., Yano, J.I.& Khain, A.Ice multiplication by breakup in ice-ice collisions.Part I: Theoretical formulation.J.Atmos .Sci . 74, 1705–1719 (2017).

    Article 

    Google Scholar  

  36. Takahashi, T., Nagao, Y.& Kushiyama, Y.Possible high ice particle production during graupel-graupel collisions.J.Atmos .Sci . 52, 4523–4527 (1995).

    Article 

    Google Scholar  

  37. Griggs, D.J.& Choularton, T.W.Freezing modes of riming droplets with application to ice splinter production.Q.J.R.Meteorol.Soc. 109, 243–253 (1983).

    Article 

    Google Scholar  

  38. Lauber, A., Kiselev, A., Pander, T., Handmann, P.& Leisner, T.Secondary ice formation during freezing of levitated droplets.J.Atmos .Sci . 75, 2815–2826 (2018).

    Article 

    Google Scholar  

  39. Seidel, J.S.et al.Secondary ice production – no evidence of efficient rime-splintering mechanism.Atmos.Chem.Phys. 24, 5247–5263 (2024).

    article  
    CAS  

    Google Scholar  

  40. Patade, S.et al.The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E.Atmos.Chem.Phys. 22, 12055–12075 (2022).

    article  
    CAS  

    Google Scholar  

  41. Waman, D.et al.Dependencies of Four Mechanisms of Secondary Ice Production on Cloud-Top Temperature in a Continental Convective Storm.J.Atmos .Sci . 79, 3375–3404 (2022).

    Article 

    Google Scholar  

  42. Bacon, N.J., Swanson, B.D., Baker, M.B.& Davis, E.J.Breakup of levitated frost particles.J.Geophys.Res.Atmos. 103, 13763–13775 (1998).

    Article 

    Google Scholar  

  43. Deshmukh, A., Phillips, V.T.J., Bansemer, A., Patade, S.& Waman, D.New Empirical Formulation for the Sublimational Breakup of Graupel and Dendritic Snow.J.Atmos .Sci . 79, 317–336 (2022).

    Article 

    Google Scholar  

  44. Wieder, J.et al.Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations.Atmos.Chem.Phys. 22, 9767–9797 (2022).

    article  
    CAS  

    Google Scholar  

  45. von Terzi, L., Dias Neto, J., Ori, D., Myagkov, A.& Kneifel, S.Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations.Atmos.Chem.Phys. 22, 11795–11821 ( 2022 ) .

    Article 

    Google Scholar  

  46. Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P.& Luke, E.Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modeling.Atmos.Chem.Phys. 16, 2997–3012 ( 2016 ) .

    article  
    CAS  

    Google Scholar  

  47. Oue, M.et al.Linear depolarization ratios of columnar ice crystals in a deep precipitating system over the arctic observed by zenith-pointing Ka-band doppler radar.J.Appl.Meteorol.Climatol. 54, 1060–1068 ( 2015 ) .

    Article 

    Google Scholar  

  48. Oue, M., Kollias, P., Ryzhkov, A.& Luke, E.P.Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic.J.Geophys.Res.Atmos. 123, 2797–2815 (2018).

    Article 

    Google Scholar  

  49. Giangrande, S.E.et al.Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event.J.Geophys.Res.Atmos. 121, 5846–5863 (2016).

    Article 

    Google Scholar  

  50. Hogan, R.J., Field, P.R., Illingworth, A.J., Cotton, R.J.& Choularton, T.W.Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar.Q.J.R.Meteorol.Soc. 128, 451–476 (2002).

    Article 

    Google Scholar  

  51. Li, H., Korolev, A.& Moisseev, D.Supercooled liquid water and secondary ice production in Kelvin-Helmholtz instability as revealed by radar Doppler spectra observations.Atmos.Chem.Phys. 21, 13593–13608 (2021).

    article  
    CAS  

    Google Scholar  

  52. Sinclair, V.A., Moisseev, D.& Von Lerber, A.How dual-polarization radar observations can be used to verify model representation of secondary ice.J.Geophys.Res. 121, 10,954–10,970 (2016).

    Article 

    Google Scholar  

  53. Oue, M.et al.The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: Description and applications of a virtual observatory.Geosci.Model Dev. 13, 1975–1998 (2020).

    Article 

    Google Scholar  

  54. Vignon, É.et al.Challenging and Improving the Simulation of Mid‐Level Mixed‐Phase Clouds Over the High‐Latitude Southern Ocean.J.Geophys.Res.Atmos. 126, 1–21 (2021).

    Article 

    Google Scholar  

  55. Vignon, Besic, N., Jullien, N., Gehring, J.& Berne, A.Microphysics of Snowfall Over Coastal East Antarctica Simulated by Polar WRF and Observed by Radar.J.Geophys.Res.Atmos. 124, 11452–11476 (2019).

    Article 

    Google Scholar  

  56. Morrison, H., Thompson, G.& Tatarskii, V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes.Mon.Weather Rev. 137, 991–1007 (2009).

    Article 

    Google Scholar  

  57. Küchler, N.et al.A W-band radar-radiometer system for accurate and continuous monitoring of clouds and precipitation.J.Atmos.Ocean.Technol. 34, 2375–2392 ( 2017 ) .

    Article 

    Google Scholar  

  58. Coen, M.C.et al.Identification of topographic features influencing aerosol observations at high altitude stations.Atmos.Chem.Phys. 18, 12289–12313 (2018).

    article  
    CAS  

    Google Scholar  

  59. Proske, U., Bessenbacher, V., Dedekind, Z., Lohmann, U.& Neubauer, D.How frequent is natural cloud seeding from ice cloud layers (<-35°C) over Switzerland? Atmos.Chem.Phys. 21, 5195–5216 ( 2021 ) .

    article  
    CAS  

    Google Scholar  

  60. DeMott, P.J.et al.Predicting global atmospheric ice nuclei distributions and their impacts on climate.Proc.Natl Acad.Sci. 107, 11217–11222 ( 2010 ) .

    article  
    CAS  

    Google Scholar  

  61. Reisner, J., Rasmussen, R.M.& Bruintjes, R.T.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Q.J.R.Meteorol.Soc. 124, 1071–1107 (1998).

    Article 

    Google Scholar  

  62. Phillips, V.T.J., Patade, S., Gutierrez, J.& Bansemer, A.Secondary ice production by fragmentation of freezing drops: Formulation and theory.J.Atmos .Sci . 75, 3031–3070 (2018).

    Article 

    Google Scholar  

  63. Georgakaki, P.et al.Secondary ice production processes in wintertime alpine mixed-phase clouds.Atmos.Chem.Phys. 22, 1965–1988 (2022).

    article  
    CAS  

    Google Scholar  

  64. Phillips, V.T.J.et al.Ice multiplication by breakup in ice-ice collisions.Part II: Numerical simulations.J.Atmos .Sci . 74, 2789–2811 (2017).

    Article 

    Google Scholar  

  65. Sharma, V., Gerber, F.& Lehning, M.Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling.Geosci.Model Dev. 16, 719–749 (2023).

    Article 

    Google Scholar  

  66. Yang, J.et al.High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than −8°C.Atmos.Res.233, 104719 (2020).

  67. Jing, X.et al.Pre-Activation of Ice Nucleating Particles in Deposition Nucleation Mode: Evidence From Measurement Using a Static Vacuum Water Vapor Diffusion Chamber in Xinjiang, China.geophy .Res .Lett. 49, 1–9 ( 2022 ) .

    Article 

    Google Scholar  

  68. Kneifel, S.& Moisseev, D.Long-term statistics of riming in nonconvective clouds derived from ground-based doppler cloud radar observations.J.Atmos .Sci . 77, 3495–3508 ( 2020 ) .

    Article 

    Google Scholar  

  69. Orr, B.W.& Kropfli, R.A.A method for estimating particle fall velocities from vertically pointing Doppler radar.J.Atmos.Ocean.Technol. 16, 29–37 (1999).

    Article 

    Google Scholar  

  70. Yang, J., Lei, H., Hu, Z.& Hou, T.Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China.Atmos.Res. 142, 79–90 (2014).

    article  
    CAS  

    Google Scholar  

  71. Barrett, A.I., Westbrook, C.D., Nicol, J.C.& Stein, T.H.M.Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis.Atmos.Chem.Phys. 19, 5753–5769 (2019).

    article  
    CAS  

    Google Scholar  

  72. Dedekind, Z., Proske, U., Ferrachat, S., Lohmann, U.& Neubauer, D.Simulating the seeder-feeder impacts on cloud ice and precipitation over the Alps.Atmos.Chem.Phys. 24, 5389–5404 (2024).

    article  
    CAS  

    Google Scholar  

  73. Moisseev, D.N., Lautaportti, S., Tyynela, J.& Lim, S.Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation.J.Geophys.Res.Atmos. 120, 12644–12655 (2015).

    Article 

    Google Scholar  

  74. Dedekind, Z., Grazioli, J., Austin, P.H.& Lohmann, U.Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production? Atmos.Chem.Phys. 23, 2345–2364 (2023).

    article  
    CAS  

    Google Scholar  

  75. Ferrone, A.& Berne, A.Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica.Earth Syst.Sci.Data 15, 1115–1132 ( 2023 ) .

    Article 

    Google Scholar  

  76. Foskinis, R.et al.Drivers of Droplet Formation in East Mediterranean Orographic Clouds.Preprint at: https://doi.org/10.5194/egusphere-2024-490 (2024).

  77. Gao, K.et al.Biological and dust aerosol as sources of ice nucleating particles in the Eastern Mediterranean: source apportionment, atmospheric processing and parameterization.Preprint at: https://doi.org/10.5194/egusphere-2024-511 (2024).

  78. Zografou, O.et al.High Altitude Aerosol Chemical Characterization and Source Identification: Insights from the CALISHTO Campaign.Preprint at: https://doi.org/10.5194/egusphere-2024-737 (2024).

  79. Gerber, H.Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser diffraction instrument.Appl.Opt. 30, 4824–4831 ( 1991 ) .

    article  
    CAS  

    Google Scholar  

  80. Guyot, G.et al.Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory.Fr.Atmos.Meas.Tech. 8, 4347–4367 ( 2015 ) .

    Article 

    Google Scholar  

  81. Brazda, V.et al.Cloud microphysics from the free space optical link point of view – Preliminary experimental results.In 2013 2nd International Workshop on Optical Wireless Communications (IWOW), https://doi.org/10.1109/IWOW.2013.6777778 (2013).

  82. Hu, M.et al.Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing.Environ.Sci.Technol. 46, 9941–9947 (2012).

    article  
    CAS  

    Google Scholar  

  83. Peters, T.M., Ott, D.& O’Shaughnessy, P.T.Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.Ann.Occup.Hyg. 50, 843–850 ( 2006 ) .

    CAS 

    Google Scholar  

  84. Mech, M.et al.PAMTRA 1.0: The Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere.Geosci.Model Dev. 13, 4229–4251 (2020).

    Article 

    Google Scholar  

  85. Billault-Roux, A.-C.& Berne, A.Integrated water vapor and liquid water path retrieval using a single-channel radiometer.Atmos.Meas.Tech. 14, 2749–2769 (2021).

    Article 

    Google Scholar  

  86. Karalis, M.et al.Effects of secondary ice processes on a stratocumulus to cumulus transition during a cold-air outbreak.Atmos.Res.277, 106302 (2022).

  87. Lloyd, G.et al.The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch.Atmos.Chem.Phys. 15, 12953–12969 (2015).

    article  
    CAS  

    Google Scholar  

  88. Bigg, E.K.The formation of atmospheric ice crystals by the freezing of droplets.Q.J.R.Meteorol.Soc. 79, 510–519 (1953).

    Article 

    Google Scholar  

  89. Meyers, M.P., DeMott, P.J.& Cotton, W.R.New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model.J.Appl.Meteorol. 31, 708–721 ( 1992 ) .

    Article 

    Google Scholar  

  90. Cooper, W.A.Ice Initiation in Natural Clouds.Meteorol.Monogr. 21, 29–32 (1986).

    Article 

    Google Scholar  

  91. Sotiropoulou, G., Ickes, L., Nenes, A.& Ekman, A.Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process.Atmos.Chem.Phys. 21, 9741–9760 (2021).

    article  
    CAS  

    Google Scholar  

  92. James, R.L., Phillips, V.T.J.& Connolly, P.J.Secondary ice production during the break-up of freezing water drops on impact with ice particles.Atmos.Chem.Phys. 21, 18519–18530 ( 2021 ) .

    article  
    CAS  

    Google Scholar  

  93. Libbrecht, K.G.Physical Dynamics of Ice Crystal Growth.Annu.Rev.Mater.Res. 47, 271–295 (2017).

    article  
    CAS  

    Google Scholar  

  94. Georgakaki, P.et al.Data and scripts for “Unraveling secondary ice production in winter orographic clouds through a synergy of in-situ observations, remote sensing and modeling”.Zenodo https://doi.org/10.5281/zenodo.10838606 (2024).