No results found
We couldn't find anything using that term, please try searching for something else.
Vergara - Temprado , J.et al .strong control of Southern Ocean cloud reflectivity by ice - nucleate particle .Proc.Natl Acad.Sci.USA 115, 2687–2692 (
Vergara – Temprado , J.et al .strong control of Southern Ocean cloud reflectivity by ice – nucleate particle .Proc.Natl Acad.Sci.USA 115, 2687–2692 ( 2018 ) .
article
CAS
Google Scholar
Tan, I.& Storelvmo, T.Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change.geophy .Res .Lett. 46, 2894–2902 (2019).
Article
Google Scholar
Heymsfield, A.J.et al.Contributions of the Liquid and Ice Phases to Global Surface Precipitation: Observations and Global Climate Modeling.J.Atmos .Sci . 77, 2629–2648 ( 2020 ) .
Article
Google Scholar
Mülmenstädt, J., Sourdeval, O., Delanoë, J.& Quaas, J.Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals.geophy .Res .Lett. 42, 6502–6509 (2015).
Article
Google Scholar
Korolev, A.& Milbrandt, J.How Are Mixed-Phase Clouds Mixed? geophy .Res .Lett.49, e2022GL099578 ( 2022 ) .
Field, P.R.et al.Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale.Q.J.R.Meteorol.Soc. 130, 1877–1904 ( 2004 ) .
Article
Google Scholar
Bergeron, T.On the physics of clouds and precipitation.Report, International Union of Geodesy and Geophysics, https://doi.org/10.1038/174957a0 (1935).
Findeisen, W.Die kolloidmeteorologischen vorgänge bei der niederschlagsbildung.Meteorol.Z. 55, 121–133 ( 1938 ) .
Google Scholar
Wegener, A.Thermodynamik der Atmosphäre, 331 pp.(Ger.Barth,Leipzig, 1911).
Matus, A.V.& L’Ecuyer, T.S.The role of cloud phase in Earth’s radiation budget.J.Geophys.Res. 122, 2559–2578 (2017).
Article
Google Scholar
McCoy, D.T., Tan, I., Hartmann, D.L., Zelinka, M.D.& Storelvmo, T.On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs.J.Adv.Model.Earth Syst. 8, 650–668 (2016).
Article
Google Scholar
Zelinka, M.D.et al.Causes of Higher Climate Sensitivity in CMIP6 Models.geophy .Res .Lett. 47, 1–12 (2020).
Article
Google Scholar
Hoose, C.& Möhler, O.Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments.Atmos.Chem.Phys. 12, 9817–9854 (2012).
Murray, B.J., O’Sullivan, D., Atkinson, J.D.& Webb, M.E.Ice nucleation by particles immersed in supercooled cloud droplets.Chem.Soc.Rev. 41, 6519–6554 ( 2012 ) .
article
CAS
Google Scholar
Kanji, Z.A.et al.Overview of Ice Nucleating Particles.Meteorol.Monogr. 58, 1.1–1.33 (2017).
Article
Google Scholar
Field, P.R.et al.Chapter 7.Secondary Ice Production – current state of the science and recommendations for the future.Meteorol.Monogr. 58, 7.1–7.20 (2017).
Google Scholar
Korolev, A.& Leisner, T.Review of experimental studies of secondary ice production.Atmos.Chem.Phys. 20, 11767–11797 (2020).
Huang, Y.et al.Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production.Atmos.Chem.Phys. 22, 2365–2384 (2022).
article
CAS
Google Scholar
Young, G.et al.Radiative Effects of Secondary Ice Enhancement in Coastal Antarctic Clouds.geophy .Res .Lett. 46, 2312–2321 (2019).
Article
Google Scholar
Grzegorczyk, P.et al.Fragmentation of ice particles: laboratory experiments on graupel-graupel and graupel-snowflake collisions.Atmos.Chem.Phys. 23, 13505–13521 (2023).
article
CAS
Google Scholar
Kleinheins, J., Kiselev, A., Keinert, A., Kind, M.& Leisner, T.Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles.J.Atmos .Sci . 78, 1–28 (2021).
Google Scholar
Lasher-Trapp, S.et al.A multisensor investigation of rime splintering in tropical maritime cumuli.J.Atmos .Sci . 73, 2547–2564 (2016).
Article
Google Scholar
Lawson, R.P., Woods, S.& Morrison, H.The microphysics of ice and precipitation development in tropical cumulus clouds.J.Atmos .Sci . 72, 2429–2445 (2015).
Article
Google Scholar
Järvinen, E.et al.Evidence for Secondary Ice Production in Southern Ocean Maritime Boundary Layer Clouds.J.Geophys.Res.Atmos. 127, 1–31 ( 2022 ) .
Article
Google Scholar
Billault-Roux, A.-C.et al.Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study.Atmos.Chem.Phys. 23, 10207–10234 (2023).
article
CAS
Google Scholar
Grazioli, J.et al.Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014.Atmos.Chem.Phys. 15, 13787–13802 ( 2015 ) .
article
CAS
Google Scholar
Luke, E.P., Yang, F., Kollias, P., Vogelmann, A.M.& Maahn, M.New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic.Proc.Natl Acad.Sci.USA 118, 1–9 (2021).
Article
Google Scholar
Li, H., Möhler, O., Petäjä, T.& Moisseev, D.Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: Environmental conditions and the relevance to secondary ice production.Atmos.Chem.Phys. 21, 14671–14686 ( 2021 ) .
article
CAS
Google Scholar
Atlas, R.L.et al.How Well Do Large-Eddy Simulations and Global Climate Models Represent Observed Boundary Layer Structures and Low Clouds Over the Summertime Southern Ocean? J.Adv.Model.Earth Syst. 12, 1–25 ( 2020 ) .
Article
Google Scholar
Sotiropoulou, G.et al.Secondary ice production in summer clouds over the Antarctic coast: An underappreciated process in atmospheric models.Atmos.Chem.Phys. 21, 755–771 (2021).
article
CAS
Google Scholar
Zhao, X.& Liu, X.Global Importance of Secondary Ice Production.geophy .Res .Lett. 48, 1–11 (2021).
CAS
Google Scholar
Hoose, C.Another Piece of Evidence for Important but Uncertain Ice Multiplication Processes.AGU Adv. 3, 2021–2023 (2022).
Article
Google Scholar
Hallett, J.& Mossop, S.C.Production of secondary ice particles during the riming process.Nature 249, 26–28 (1974).
article
CAS
Google Scholar
Heymsfield, A.J.& Mossop, S.C.Temperature dependence of secondary ice crystal production during soft hail growth by riming.Q.J.R.Meteorol.Soc. 110, 765–770 (1984).
Article
Google Scholar
Phillips, V.T.J., Yano, J.I.& Khain, A.Ice multiplication by breakup in ice-ice collisions.Part I: Theoretical formulation.J.Atmos .Sci . 74, 1705–1719 (2017).
Article
Google Scholar
Takahashi, T., Nagao, Y.& Kushiyama, Y.Possible high ice particle production during graupel-graupel collisions.J.Atmos .Sci . 52, 4523–4527 (1995).
Article
Google Scholar
Griggs, D.J.& Choularton, T.W.Freezing modes of riming droplets with application to ice splinter production.Q.J.R.Meteorol.Soc. 109, 243–253 (1983).
Article
Google Scholar
Lauber, A., Kiselev, A., Pander, T., Handmann, P.& Leisner, T.Secondary ice formation during freezing of levitated droplets.J.Atmos .Sci . 75, 2815–2826 (2018).
Article
Google Scholar
Seidel, J.S.et al.Secondary ice production – no evidence of efficient rime-splintering mechanism.Atmos.Chem.Phys. 24, 5247–5263 (2024).
article
CAS
Google Scholar
Patade, S.et al.The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E.Atmos.Chem.Phys. 22, 12055–12075 (2022).
article
CAS
Google Scholar
Waman, D.et al.Dependencies of Four Mechanisms of Secondary Ice Production on Cloud-Top Temperature in a Continental Convective Storm.J.Atmos .Sci . 79, 3375–3404 (2022).
Article
Google Scholar
Bacon, N.J., Swanson, B.D., Baker, M.B.& Davis, E.J.Breakup of levitated frost particles.J.Geophys.Res.Atmos. 103, 13763–13775 (1998).
Article
Google Scholar
Deshmukh, A., Phillips, V.T.J., Bansemer, A., Patade, S.& Waman, D.New Empirical Formulation for the Sublimational Breakup of Graupel and Dendritic Snow.J.Atmos .Sci . 79, 317–336 (2022).
Article
Google Scholar
Wieder, J.et al.Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations.Atmos.Chem.Phys. 22, 9767–9797 (2022).
article
CAS
Google Scholar
von Terzi, L., Dias Neto, J., Ori, D., Myagkov, A.& Kneifel, S.Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations.Atmos.Chem.Phys. 22, 11795–11821 ( 2022 ) .
Article
Google Scholar
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P.& Luke, E.Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modeling.Atmos.Chem.Phys. 16, 2997–3012 ( 2016 ) .
article
CAS
Google Scholar
Oue, M.et al.Linear depolarization ratios of columnar ice crystals in a deep precipitating system over the arctic observed by zenith-pointing Ka-band doppler radar.J.Appl.Meteorol.Climatol. 54, 1060–1068 ( 2015 ) .
Article
Google Scholar
Oue, M., Kollias, P., Ryzhkov, A.& Luke, E.P.Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic.J.Geophys.Res.Atmos. 123, 2797–2815 (2018).
Article
Google Scholar
Giangrande, S.E.et al.Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event.J.Geophys.Res.Atmos. 121, 5846–5863 (2016).
Article
Google Scholar
Hogan, R.J., Field, P.R., Illingworth, A.J., Cotton, R.J.& Choularton, T.W.Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar.Q.J.R.Meteorol.Soc. 128, 451–476 (2002).
Article
Google Scholar
Li, H., Korolev, A.& Moisseev, D.Supercooled liquid water and secondary ice production in Kelvin-Helmholtz instability as revealed by radar Doppler spectra observations.Atmos.Chem.Phys. 21, 13593–13608 (2021).
article
CAS
Google Scholar
Sinclair, V.A., Moisseev, D.& Von Lerber, A.How dual-polarization radar observations can be used to verify model representation of secondary ice.J.Geophys.Res. 121, 10,954–10,970 (2016).
Article
Google Scholar
Oue, M.et al.The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: Description and applications of a virtual observatory.Geosci.Model Dev. 13, 1975–1998 (2020).
Article
Google Scholar
Vignon, É.et al.Challenging and Improving the Simulation of Mid‐Level Mixed‐Phase Clouds Over the High‐Latitude Southern Ocean.J.Geophys.Res.Atmos. 126, 1–21 (2021).
Article
Google Scholar
Vignon, Besic, N., Jullien, N., Gehring, J.& Berne, A.Microphysics of Snowfall Over Coastal East Antarctica Simulated by Polar WRF and Observed by Radar.J.Geophys.Res.Atmos. 124, 11452–11476 (2019).
Article
Google Scholar
Morrison, H., Thompson, G.& Tatarskii, V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes.Mon.Weather Rev. 137, 991–1007 (2009).
Article
Google Scholar
Küchler, N.et al.A W-band radar-radiometer system for accurate and continuous monitoring of clouds and precipitation.J.Atmos.Ocean.Technol. 34, 2375–2392 ( 2017 ) .
Article
Google Scholar
Coen, M.C.et al.Identification of topographic features influencing aerosol observations at high altitude stations.Atmos.Chem.Phys. 18, 12289–12313 (2018).
article
CAS
Google Scholar
Proske, U., Bessenbacher, V., Dedekind, Z., Lohmann, U.& Neubauer, D.How frequent is natural cloud seeding from ice cloud layers (<-35°C) over Switzerland? Atmos.Chem.Phys. 21, 5195–5216 ( 2021 ) .
article
CAS
Google Scholar
DeMott, P.J.et al.Predicting global atmospheric ice nuclei distributions and their impacts on climate.Proc.Natl Acad.Sci. 107, 11217–11222 ( 2010 ) .
article
CAS
Google Scholar
Reisner, J., Rasmussen, R.M.& Bruintjes, R.T.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Q.J.R.Meteorol.Soc. 124, 1071–1107 (1998).
Article
Google Scholar
Phillips, V.T.J., Patade, S., Gutierrez, J.& Bansemer, A.Secondary ice production by fragmentation of freezing drops: Formulation and theory.J.Atmos .Sci . 75, 3031–3070 (2018).
Article
Google Scholar
Georgakaki, P.et al.Secondary ice production processes in wintertime alpine mixed-phase clouds.Atmos.Chem.Phys. 22, 1965–1988 (2022).
article
CAS
Google Scholar
Phillips, V.T.J.et al.Ice multiplication by breakup in ice-ice collisions.Part II: Numerical simulations.J.Atmos .Sci . 74, 2789–2811 (2017).
Article
Google Scholar
Sharma, V., Gerber, F.& Lehning, M.Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling.Geosci.Model Dev. 16, 719–749 (2023).
Article
Google Scholar
Yang, J.et al.High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than −8°C.Atmos.Res.233, 104719 (2020).
Jing, X.et al.Pre-Activation of Ice Nucleating Particles in Deposition Nucleation Mode: Evidence From Measurement Using a Static Vacuum Water Vapor Diffusion Chamber in Xinjiang, China.geophy .Res .Lett. 49, 1–9 ( 2022 ) .
Article
Google Scholar
Kneifel, S.& Moisseev, D.Long-term statistics of riming in nonconvective clouds derived from ground-based doppler cloud radar observations.J.Atmos .Sci . 77, 3495–3508 ( 2020 ) .
Article
Google Scholar
Orr, B.W.& Kropfli, R.A.A method for estimating particle fall velocities from vertically pointing Doppler radar.J.Atmos.Ocean.Technol. 16, 29–37 (1999).
Article
Google Scholar
Yang, J., Lei, H., Hu, Z.& Hou, T.Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China.Atmos.Res. 142, 79–90 (2014).
article
CAS
Google Scholar
Barrett, A.I., Westbrook, C.D., Nicol, J.C.& Stein, T.H.M.Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis.Atmos.Chem.Phys. 19, 5753–5769 (2019).
article
CAS
Google Scholar
Dedekind, Z., Proske, U., Ferrachat, S., Lohmann, U.& Neubauer, D.Simulating the seeder-feeder impacts on cloud ice and precipitation over the Alps.Atmos.Chem.Phys. 24, 5389–5404 (2024).
article
CAS
Google Scholar
Moisseev, D.N., Lautaportti, S., Tyynela, J.& Lim, S.Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation.J.Geophys.Res.Atmos. 120, 12644–12655 (2015).
Article
Google Scholar
Dedekind, Z., Grazioli, J., Austin, P.H.& Lohmann, U.Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production? Atmos.Chem.Phys. 23, 2345–2364 (2023).
article
CAS
Google Scholar
Ferrone, A.& Berne, A.Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica.Earth Syst.Sci.Data 15, 1115–1132 ( 2023 ) .
Article
Google Scholar
Foskinis, R.et al.Drivers of Droplet Formation in East Mediterranean Orographic Clouds.Preprint at: https://doi.org/10.5194/egusphere-2024-490 (2024).
Gao, K.et al.Biological and dust aerosol as sources of ice nucleating particles in the Eastern Mediterranean: source apportionment, atmospheric processing and parameterization.Preprint at: https://doi.org/10.5194/egusphere-2024-511 (2024).
Zografou, O.et al.High Altitude Aerosol Chemical Characterization and Source Identification: Insights from the CALISHTO Campaign.Preprint at: https://doi.org/10.5194/egusphere-2024-737 (2024).
Gerber, H.Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser diffraction instrument.Appl.Opt. 30, 4824–4831 ( 1991 ) .
article
CAS
Google Scholar
Guyot, G.et al.Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory.Fr.Atmos.Meas.Tech. 8, 4347–4367 ( 2015 ) .
Article
Google Scholar
Brazda, V.et al.Cloud microphysics from the free space optical link point of view – Preliminary experimental results.In 2013 2nd International Workshop on Optical Wireless Communications (IWOW), https://doi.org/10.1109/IWOW.2013.6777778 (2013).
Hu, M.et al.Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing.Environ.Sci.Technol. 46, 9941–9947 (2012).
article
CAS
Google Scholar
Peters, T.M., Ott, D.& O’Shaughnessy, P.T.Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.Ann.Occup.Hyg. 50, 843–850 ( 2006 ) .
CAS
Google Scholar
Mech, M.et al.PAMTRA 1.0: The Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere.Geosci.Model Dev. 13, 4229–4251 (2020).
Article
Google Scholar
Billault-Roux, A.-C.& Berne, A.Integrated water vapor and liquid water path retrieval using a single-channel radiometer.Atmos.Meas.Tech. 14, 2749–2769 (2021).
Article
Google Scholar
Karalis, M.et al.Effects of secondary ice processes on a stratocumulus to cumulus transition during a cold-air outbreak.Atmos.Res.277, 106302 (2022).
Lloyd, G.et al.The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch.Atmos.Chem.Phys. 15, 12953–12969 (2015).
article
CAS
Google Scholar
Bigg, E.K.The formation of atmospheric ice crystals by the freezing of droplets.Q.J.R.Meteorol.Soc. 79, 510–519 (1953).
Article
Google Scholar
Meyers, M.P., DeMott, P.J.& Cotton, W.R.New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model.J.Appl.Meteorol. 31, 708–721 ( 1992 ) .
Article
Google Scholar
Cooper, W.A.Ice Initiation in Natural Clouds.Meteorol.Monogr. 21, 29–32 (1986).
Article
Google Scholar
Sotiropoulou, G., Ickes, L., Nenes, A.& Ekman, A.Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process.Atmos.Chem.Phys. 21, 9741–9760 (2021).
article
CAS
Google Scholar
James, R.L., Phillips, V.T.J.& Connolly, P.J.Secondary ice production during the break-up of freezing water drops on impact with ice particles.Atmos.Chem.Phys. 21, 18519–18530 ( 2021 ) .
article
CAS
Google Scholar
Libbrecht, K.G.Physical Dynamics of Ice Crystal Growth.Annu.Rev.Mater.Res. 47, 271–295 (2017).
article
CAS
Google Scholar
Georgakaki, P.et al.Data and scripts for “Unraveling secondary ice production in winter orographic clouds through a synergy of in-situ observations, remote sensing and modeling”.Zenodo https://doi.org/10.5281/zenodo.10838606 (2024).