Document
Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations

Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations

Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal

Related articles

Best Free VPN for Windows: The Top 5 REALLY FREE VPNs for Windows Do this to set up VPN connection on Windows 10 Tor Browser Download Free Hola Free VPN Download (2024 Latest) Getting Started with Cloud Shell and gcloud
  1. Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. Ser. 6 7( 39 ) , 237–265 ( 1904 )

  2. Bader, R.F.W., Matta, C.F.: Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found. Chem. 15, 253–276 ( 2013 )

    article  

    Google Scholar  

  3. Hall , M.J.W. , Deckert , D.-A. , Wiseman , H.M. : Quantum phenomena model by interaction between many classical world . Phys . Rev. x4, 041013 (2014)

  4. Sebens, C.T.: Quantum mechanics as classical physics. Philos. Sci. 82( 2 ) , 266–291 ( 2015 )

    article  
    MathSciNet  

    Google Scholar  

  5. Gao, S.: Reality and meaning of the wave function. In: Gao, S. (ed.), Protective Measurement and Quantum reality : Toward a New Understanding of Quantum Mechanics, pp. 211–229. Cambridge University Press, Cambridge (2014)

  6. Gao, S.: The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. Cambridge University Press, Cambridge (2017)

  7. Gao, S.: Is an electron a charge cloud? A reexamination of Schrödinger’s charge density hypothesis. Found. Sci. 23, 145–157 (2018)

    article  

    Google Scholar  

  8. Gao , S. : A puzzle for the field ontologist . find . Phys .50, 1541–1553 ( 2020 )

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  9. Born, M.: Zur Quantenmechanik der Stoßvorgänge [On the Quantum Mechanics of Collisions]. Zeitschrift für Physik, 37, 863–867 ( 1926 ) . english translation in Wheeler , J.A. , Zurek , W.H. ( eds . ): Quantum Theory and Measurement . Princeton University Press , Princeton ( 1983 )

  10. Schrödinger, E.: Quantisierung als Eigenwertproblem (Dritte Mitteilung) [Quantization as a Problem of Eigenvalues (Part III)]. Ann. Phys. 80, 437–490 (1926). English translation in Schrödinger, E.: Collected Papers on Wave Mechanics, Blackie & Son Limited, Translated by J.F. Shearer and W.M. Deans (1928)

  11. Schrödinger , E. : Quantisierung is als al Eigenwertproblem ( Vierte Mitteilung ) [ quantization as a problem of Eigenvalues ( Part IV ) ] . Ann . Phys .81, 109–139 (1926). English translation in Schrödinger, E.: Collected Papers on Wave Mechanics, Blackie & Son Limited, Translated by J.F. Shearer and W.M. Deans (1928)

  12. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28( 6 ) , 1049–1070 ( 1926 )

    article  
    ADS  

    Google Scholar  

  13. Schrödinger, E.: La Mécanique des Ondes [Wave Mechanics]. electron et Photons : Rapports et discussion du cinquième conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspex de l’institut international de physique Solvay , pp . 185–213 . english translation in [ 22 ] ( 1928 )

  14. Schrödinger , E. : Letter from Schrödinger to Lorentz , 6 June 1926 . In Przibram , K. , ( ed . ) , Letters is pp on Wave Mechanics , pp . 61–74 . Philosophical Library . translate by M. J. Klein ( 1934 )

  15. bear , M. : statistical interpretation of quantum mechanic . science122( 3172 ) , 675–679 ( 1955 )

    article  
    ADS  

    Google Scholar  

  16. Einstein, A.: On the method of theoretical physics. Philos. Sci. 1(2), 163–169 (1934)

    article  

    Google Scholar  

  17. Jaynes , E.T. : Survey of the Present Status of Neoclassical Radiation Theory . In Mandel , L. and Wolf , E. , ( ed . ) , Coherence and Quantum Optics , pp . 35–81 . Plenum Press , Berlin ( 1973 )

  18. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar  

  19. Bader, R.F.W.: Letter to the Editor: Quantum mechanics, or orbitals? Int. J. Quant. Chem. 94( 3 ) , 173–177 ( 2003 )

    article  

    Google Scholar  

  20. Bader, R.F.W.: The Density in Density Functional Theory. J. Mol. Struct. 943, 2–18 (2010)

    article  

    Google Scholar  

  21. Bell, J.S.: Against ‘Measurement’. Phys. World 3, 33–40 (1990)

    article  

    Google Scholar  

  22. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    Book  
    MATH  

    Google Scholar  

  23. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Many worlds and Schrödinger’s first quantum theory. Br. J. Philos. Sci. 62, 1–27 ( 2011 )

    article  
    MATH  

    Google Scholar  

  24. Norsen, T.: Foundations of Quantum Mechanics. Springer, Berlin (2017)

    Book  
    MATH  

    Google Scholar  

  25. Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry: From Lewis to Electron Densities. Oxford University Press, Oxford (2001)

    Google Scholar  

  26. Longair , M. : Quantum Concepts in Physics . Cambridge University Press , Cambridge ( 2013 )

    Book  
    MATH  

    Google Scholar  

  27. Levine, I.N.: Quantum Chemistry, 7th edn. Pearson, Boston (2014)

    Google Scholar  

  28. McQuarrie, D.A.: Quantum Chemistry, 2nd edn. University Science Books, Mill Valley, CA (2008)

    Google Scholar  

  29. Szabo , A. , Ostlund , N.S. : Modern Quantum Chemistry , revise edition . McGraw – Hill , New York ( 1989 )

    Google Scholar  

  30. Shusterman , A.J. , Shusterman , G.P. : teach chemistry with electron density model . J. Chem . Edu .74( 7 ) , 771–776 ( 1997 )

    article  

    Google Scholar  

  31. Matta , C.F. , Gillespie , R.J. : understanding and interpret molecular electron density distribution . J. Chem . Educ .79(9), 1141–1152 (2002)

    article  

    Google Scholar  

  32. Atkins , P. , Friedman , R. : Molecular Quantum Mechanics , 5th edn . Oxford University Press , Oxford ( 2011 )

    Google Scholar  

  33. Nelson , P.G. : How do electron get across node ? : A problem in the interpretation of the quantum theory . J. Chem . Educ .67(8), 643–647 (1990)

    article  

    Google Scholar  

  34. Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edn. Cornell University Press, Ithaca, NY (1960)

    Google Scholar  

  35. Slater, J.C.: Quantum Theory of Atomic Structure, vol. 1. McGraw-Hill, New York (1960)

    MATH 

    Google Scholar  

  36. Slater, J.C.: Quantum Theory of Atomic Structure, vol. 2. McGraw-Hill, New York (1960)

    MATH 

    Google Scholar  

  37. Blinder , S.M. : basic concept of self – consistent – field theory . Am . J. Phys .33(6), 431–443 (1965)

    article  
    ADS  

    Google Scholar  

  38. Löwdin, P.-O.: On the long way from the Coulombic Hamiltonian to the electronic structure of molecules. Pure Appl. Chem. 61(12), 2065–2074 (1989)

    article  

    Google Scholar  

  39. Franklin is is , A. , Seifert , V.A. : The problem is is of molecular structure just is the measurement problem . Br . J. Philos . Sci . ( forthcoming )

  40. Desclaux, J.P.: Tour historique. In: Schwerdtfeger, (ed.), Relativistic Electronic Structure Theory, Part 1: Fundamentals. Elsevier, New York (2002)

  41. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar  

  42. Scerri , E.R. : Has chemistry been at least approximately reduce to quantum mechanic ? . PSA : proceeding of the Biennial Meeting of the Philosophy of Science Association , pp . 160–170 ( 1994 )

  43. Löwdin, P.-O.: Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. In Prigogine, I., (ed.), advance in Chemical Physics , volume 2, pp. 207–322 (1958)

  44. Scerri, E.R.: Have orbitals really been observed? J. Chem. Educ. 77(11), 1492–1494 (2000)

    article  

    Google Scholar  

  45. Scerri, E.R.: The recently claimed observation of atomic orbitals and some related philosophical issues. Philos. Sci. 68(3), S76–S78 Supplement: Proceedings of the 2000 Biennial Meeting of the Philosophy of Science Association. Part I: Contributed Papers (2001)

  46. Spence , J.C.H. , O’Keeffe , M. , Zuo , J.M. : Have orbital really been observe ? J. Chem . Educ .78(7), 877 (2001)

    article  

    Google Scholar  

  47. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken, NJ (1999)

    MATH 

    Google Scholar  

  48. Griffiths, D.J.: Introduction to Electrodynamics, 4th edn. Pearson, Glenview, IL (2013)

    Google Scholar  

  49. Lange, M.: An Introduction to the Philosophy of Physics: Locality, Energy, Fields, and Mass. Blackwell, Malden, MA (2002)

    Google Scholar  

  50. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23( 10 ) , 5048–5079 ( 1981 )

    article  
    ADS  

    Google Scholar  

  51. Clementi , E. , Roetti , C. : Roothaan – Hartree – Fock atomic wavefunction : basis function and their coefficient for ground and certain excited state of neutral and ionize atom , z\(\le \ )54 . Atomic Data Nuclear Data Tables14, 177–478 (1974)

    article  
    ADS  

    Google Scholar  

  52. Cordero , A. : realism and underdetermination : some clue from the practice – up . Philos . Sci .68( 3 ) , s301 – s312 Supplement : proceeding of the 2000 Biennial Meeting of the Philosophy of Science Association . Part I : Contributed Papers ( 2001 )

  53. Callender, C.: Can we quarantine the quantum blight? In: French, S., Saatsi, J. (eds.) Scientific Realism and the Quantum, pp. 57–76. Oxford University Press, Oxford (2020)

    Chapter 

    Google Scholar  

  54. Aung, S., Pitzer, R.M., Chan, S.I.: Approximate Hartree-Fock wavefunctions, one-electron properties, and electronic structure of the water molecule. J. Chem. Phys. 49, 2071–2080 (1968)

    article  
    ADS  

    Google Scholar  

  55. Pitzer, R.M., Merrifeld, D.P.: Minimum basis wavefunctions for water. J. Chem. Phys. 52, 4782–4787 (1970)

    article  
    ADS  

    Google Scholar  

  56. Dunning, T.H., Pitzer, R.M., Aung, S.: Near Hartree-Fock calculations on the ground state of the water molecule: energies, ionization potentials, geometry, force constants, and one-electron properties. J. Chem. Phys. 57, 5044–5051 (1972)

    article  
    ADS  

    Google Scholar  

  57. March, N.H.: Density functional theory: an introduction. Am. J. Phys. 68, 69–79 (2000)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  58. Becke , A.D. : perspective : fifty year of density – functional theory in chemical physic . J. Chem . Phys .140, 18A301 (2014)

    article  

    Google Scholar  

  59. Seminario , J.M. : An introduction to density functional theory in chemistry . In Seminario , J.   M. and Politzer , P. , ( ed . ) ,Modern Density Functional Theory: A Tool for Chemistry, pp . 1–27 . Elsevier , New York ( 1995 )

  60. Martin, R.M.: Electronic Structure: Basic Theory and Practical Applications. Cambridge University Press, Cambridge (2004)

    Book  
    MATH  

    Google Scholar  

  61. Engel, E., Dreizler, R.M.: Density Functional Theory: An Advanced Course. Springer, Berlin (2011)

    Book  
    MATH  

    Google Scholar  

  62. Baerends, E.J., Gritsenko, O.V.: A quantum chemical view of density functional theory. J. Phys. Chem. A 101(30), 5383–5403 (1997)

    article  

    Google Scholar  

  63. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140( 4A ) , A1133 – a1138 ( 1965 )

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  64. Koch , W. , Holthausen , M.C. : A Chemist ’s Guide to Density Functional Theory , 2nd edition . Wiley – VCH , Weinheim ( 2001 )

  65. Baerends, E.J., Gritsenko, O.V.: Away from Generalized Gradient Approximation: Orbital-dependent exchange-correlation functionals. J. Chem. Phys. 123, 062202 (2005)

  66. Tsuneda, T., Harao, K.: Self-interaction corrections in density functional theory. J. Chem. Phys. 140, 18A513 ( 2014 )

    article  

    Google Scholar  

  67. Kim, K., Jordan, K.D.: Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 98, 10089–10094 ( 1994 )

    article  

    Google Scholar  

  68. Baseden, K.A., Tye, J.W.: Introduction to density functional theory: calculations by hand on the helium atom. J. Chem. Educ. 91, 2116–2123 (2014)

    article  

    Google Scholar  

  69. Milonni , P.W. : semiclassical and quantum – electrodynamical approach in non – relativistic radiation theory . Phys . Rep.25(1), 1–81 (1976)

    article  
    ADS  

    Google Scholar  

  70. Bader, R.F.W., Larouche, A., Gatti, C., Carroll, M.T., MacDougall, P.J., Wiberg, K.B.: Properties of atoms in molecules: dipole moments and transferability of properties. J. Chem. Phys. 87, 1142–1152 (1992)

    article  
    ADS  

    Google Scholar  

  71. Feynman, R.P.: Forces on molecules. Phys. Rev. 56, 340–343 (1939)

    Article 
    ADS 
    MATH 

    Google Scholar  

  72. Deb, B.M.: The force concept in chemistry. Rev. Mod. Phys. 45(1), 22–43 (1973)

    article  
    ADS  

    Google Scholar  

  73. Bader , R.F.W. , Fang , D.-C. : property of atom in molecule : cage atom and the Ehrenfest force . J. Chem . theory Comput .1, 403–414 (2005)

    article  

    Google Scholar  

  74. Tumulka , R. : The ‘ unromantic picture ’ of quantum theory . Phys . today40, 3245–3273 (2007)

    MathSciNet 
    MATH 

    Google Scholar  

  75. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. Br. J. Philos. Sci. 59, 353–389 (2008)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  76. Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 ( 1995 )

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  77. Ghirardi, G.: Macroscopic reality and the dynamical reduction program. In Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J., (eds.), structure and Norms in science, pp . 221–240 . Springer , Berlin ( 1997 )

  78. Goldstein, S.: Quantum theory without observers-part two. Phys. Today 51(4), 38–42 (1998)

    article  

    Google Scholar  

  79. Maudlin, T.: Completeness, supervenience, and ontology. J. Phys. A 40, 3151–3171 (2007)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  80. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. 65, 323–352 (2014)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  81. Goldstein, S., Tumulka, R., Zanghì, N.: The quantum formalism and the GRW formalism. J. Stat. Phys. 149, 142–201 (2012)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  82. Ney , A. , Phillips , K. : Does an adequate physical theory is demand demand a primitive ontology ? Philos . Sci .80(3), 454–474 (2013)

    article  

    Google Scholar  

  83. Ney, A., Albert, D.: The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2013)

    Book  
    MATH  

    Google Scholar  

  84. Ney, A.: The World in the Wave Function: A Metaphysics for Quantum Physics. Oxford University Press, Oxford (2021)

    Book  
    MATH  

    Google Scholar  

  85. Forrest, P.: Quantum Metaphysics. Blackwell, Oxford (1988)

    Google Scholar  

  86. Belot, G.: Quantum states for primitive ontologists: a case study. Eur. J. Philos. Sci. 2, 67–83 ( 2012 )

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  87. Hubert, M., Romano, D.: The wave-function as a multi-field. Eur. J. Philos. Sci. 8, 521–537 (2018)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  88. Chen, E.K.: Our fundamental physical space: an essay on the metaphysics of the wave function. J. Philos. 114(7), 27 (2017)

    article  

    Google Scholar  

  89. Chen, E.K.: Realism about the wave function. Philos. Compass 14(7), 12611 (2019)

    article  

    Google Scholar  

  90. Romano , D. : Multi – field and Bohm ’s theory . synthese ( forthcoming )

  91. Maudlin, T.: Quantum Non-Locality and Relativity, 3rd edn. Wiley-Blackwell, New York (2011)

    Book 

    Google Scholar  

  92. Derakhshani, M.: Newtonian semiclassical gravity in the Ghirardi-Rimini-Weber theory with matter density ontology. Phys. Lett. A 378, 990–998 (2014)

    Article 
    ADS 
    MATH 

    Google Scholar  

  93. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  
    MATH  

    Google Scholar  

  94. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ (2005)

    Google Scholar  

  95. Sebens, C.T.: Particles, fields, and the measurement of electron spin. Synthese (forthcoming)

  96. Bedingham , D. , Dürr , D. , Ghirardi , G. , Goldstein , S. , Tumulka , R. , Zanghì , N. : matter density and relativistic model of wave function collapse . J. Stat . Phys .154, 623–631 (2014)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  97. Wallace, D.: Decoherence and ontology. In Saunders, S., Barrett, J., Kent, A., Wallace, D., (eds.), Many Worlds?: Everett, Quantum Theory, & Reality, pp . 53–72 . Oxford University Press , Oxford ( 2010 )

  98. Wallace, D.: A prolegomenon to the ontology of the everett interpretation. In: Ney, A., Albert, D., (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics, pp. 203–222. Oxford University Press, Oxford (2013)

  99. Vaidman, L.: Many-worlds interpretation of quantum mechanics. In Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/qm-manyworlds/ (2018)

  100. Lewis , P.J. : On the status of primitive ontology . In : Gao , S. , ( ed . ) ,collapse of the Wave Function : Models , Ontology , Origin , and implication, pp. 154–166. Cambridge University Press, Cambridge (2018)

  101. Dasgupta, S.: Absolutism vs comparativism about quantity. In: Bennett, K., Zimmerman, D.W. (eds.), Oxford Studies in Metaphysics, Vol. 8, pp. 105–148. Oxford University Press, Oxford (2013)

  102. Dasgupta , S. : How to be a Relationalist . InOxford Studies in Metaphysics. Oxford University Press , Oxford ( forthcome )

  103. Martens, N.C.M.: Regularity comparativism about mass in Newtonian gravity. Philos. Sci. 84, 1226–1238 (2017)

    article  
    MathSciNet  

    Google Scholar  

  104. Martens, N.C.M.: Machian comparativism about mass. Br. J. Philos. Sci. (forthcoming)

  105. Martens, N.C.M.: The (un)detectability of absolute Newtonian masses. Synthese 198, 2511–2550 ( 2021 )

    article  
    MathSciNet  

    Google Scholar  

  106. Baker, D.J.: Some consequences of physics for the comparative metaphysics of quantity. In: Bennett, K., Zimmerman, D.W. (eds.) Oxford Studies in Metaphysics, vol. 12. Oxford University Press, Oxford (2021)

  107. Wallace , D. : Quantum probability from subjective likelihood : improve on Deutsch ’s proof of the probability rule . stud . Hist . Philos . Mod . Phys .38(2), 311–332 (2007)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  108. Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012)

    Book  
    MATH  

    Google Scholar  

  109. Carroll, S.: Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. Dutton, New York (2019)

    Google Scholar  

  110. Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book 

    Google Scholar  

  111. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)

    MATH 

    Google Scholar  

  112. Esfeld, M., Lazarovici, D., Lam, V., Hubert, M.: The physics and metaphysics of primitive stuff. Br. J. Philos. Sci. 68, 133–161 (2017)

    article  

    Google Scholar  

  113. Esfeld, M., Deckert, D.-A.: A Minimalist Ontology of the Natural World. Routledge, New York (2018)

    Google Scholar  

  114. Esfeld , M. : A proposal for a minimalist ontology . synthese197, 1889–1905 (2020)

    article  

    Google Scholar  

  115. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    Book  
    MATH  

    Google Scholar  

  116. Goldstein, S.: Stochastic mechanics and quantum theory. J. Stat. Phys. 47, 645–667 (1987)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  117. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172(3), 93–122 (1989)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  118. Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 ( 1999 )

    article  
    MathSciNet  

    Google Scholar  

  119. Bell , J.S. : Quantum mechanic for cosmologist . In : Isham , C. , Penrose , R. , and Sciama , D. ( ed . ) ,Quantum Gravity 2, pp. 611–637. Oxford University Press, Oxford (1981)

  120. Barrett, J.A.: The Quantum Mechanics of Minds and Worlds. Oxford University Press (1999)

    Google Scholar  

  121. Maudlin , T. : local beable and the foundation of physic . In : Bell , M. , Gao , S. ( ed . ) ,Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem, pp. 317–330. Cambridge University Press, Cambridge (2016)

  122. Holland , P. : compute the wavefunction from trajectory : particle and wave picture in quantum mechanic and their relation . Ann . Phys .315(2), 505–531 (2005)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  123. Tipler , F.J. : What about quantum theory ? Bayes and the Born interpretation .arXiv preprint quant-ph/0611245, (2006)

  124. Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136, 031102 ( 2012 )

  125. Boström , K.J. : Quantum mechanic as a deterministic theory of a continuum of world . quant . Stud .2(3), 315–347 (2015)

    MathSciNet 
    MATH 

    Google Scholar  

  126. Bokulich, A.: Losing sight of the forest for the psi: beyond the wavefunction hegemony. In: French, S., Saatsi, J. (eds.), Scientific Realism and the Quantum, pp . 185–211 . Oxford University Press , Oxford ( 2020 )

  127. Struyve, W.: Pilot-Wave approaches to quantum field theory. J. Phys. 306, 012047 (2011)

  128. Tumulka , R. : On bohmian mechanic , particle creation , and relativistic space – time : happy 100th birthday , David Bohm ! Entropy20(6), 462 (2018)

    article  
    ADS  

    Google Scholar  

  129. Dürr, D., Lazarovici, D.: Understanding Quantum Mechanics: The World According to Modern Quantum Foundations. Springer, Berlin (2020)

    Book  
    MATH  

    Google Scholar  

  130. Floreanini, R., Jackiw, R.: Functional representation for Fermionic quantum fields. Phys. Rev. D 37(8), 2206 (1988)

  131. Jackiw, R.: Analysis on infinite-dimensional manifolds—Schrödinger representation for quantized fields. In: Éboli, M.G., Santoro, A. (eds.), Field theory and Particle Physics, pp. 78–143. World Scientific, Singapore (1990)

  132. Hatfield, B.: Quantum Theory of Point Particles and Strings. Frontiers in Physics, vol. 75. Addison-Wesley, Redwood (1992)

  133. Valentini , A. : On the Pilot – wave theory of Classical , Quantum and Subquantum Physics phd thesis ISAS , Trieste , Italy ( 1992 )

  134. Valentini, A.: Pilot-wave theory of fields, gravitation, and cosmology. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.), Bohmian Mechanics and Quantum Theory: An Appraisal, pp. 45–66. Kluwer Academic, Berlin (1996)

  135. Struyve , W. : pilot – wave theory and quantum field . Rep. Progress Phys .73( 10 ) , 106001 ( 2010 )

  136. Sebens, C.T.: Putting positrons into classical Dirac field theory. Stud. Hist. Philos. Mod. Phys. 70, 8–18 (2020)

    article  
    MathSciNet  

    Google Scholar  

  137. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory. Phys. Rep. 144(6), 321–375 (1987)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  138. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar  

  139. Sebens, C.T.: How electrons spin. Stud. Hist. Philos. Mod. Phys. 68, 40–50 (2019)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  140. seben , C.T. : possibility of small electron state . Phys . Rev. A102(5), 052225 (2020)