Document
Evolution of topics and trends in emerging research fields: multiple analyses with entity linking, Mann-Kendall test and burst methods in cloud computing

Evolution of topics and trends in emerging research fields: multiple analyses with entity linking, Mann-Kendall test and burst methods in cloud computing

Alhomdy, S., Thabit, F., Abdulrazzak, F. A. H., Haldorai, A., & Jagtap, S. (2021). The role of cloud computing technology: A savior to fight the l

Related articles

Cut in half: On Cloudnova Form Review (2023) Meraki Cloud Architecture Инструкция установки Go на Ubuntu 22.04 On’s New Sneakers Are Full of Holes. Here’s Why That’s Good Access Netflix, PUBG, Hulu in any countries
  • Alhomdy, S., Thabit, F., Abdulrazzak, F. A. H., Haldorai, A., & Jagtap, S. (2021). The role of cloud computing technology: A savior to fight the lockdown in COVID 19 crisis, the benefits, characteristics and applications. International Journal of Intelligent Networks , 2, 166–174. https://doi.org/10.1016/j.ijin.2021.08.001

    Article 

    Google Scholar  

  • Ali, O., Shrestha, A., Osmanaj, V., & Muhammed, S. (2020). Cloud computing technology adoption: An evaluation of key factors in local governments. Information Technology & People, 34(2), 666–703. https://doi.org/10.1108/ITP-03-2019-0119

    Article 

    Google Scholar  

  • Ali, R. O., & Abubaker, S. R. (2019). Trend analysis using Mann–Kendall, Sen’s slope estimator test and innovative trend analysis method in Yangtze River basin, China. International Journal of Engineering & Technology, 8( 2 ) , 110–119 .

    Google Scholar  

  • Al-Ruithe, M., Benkhelifa, E., & Hameed, K. (2018). Key issues for embracing the cloud computing to adopt a digital transformation: A study of Saudi public sector. Procedia Computer Science, 130, 1037–1043.

    Article 

    Google Scholar  

  • Ayaz, A., Celik, K., & Ozyurt, O. (2021). Pattern detection in cloud computing: Bibliometric mapping of publications in the field from past to present. COLLNET Journal of scientometric and Information Management , 15(2), 469–494.

    Article 

    Google Scholar  

  • Baumann, M. (2015). Historic and potential technology transition paths of grid battery storage: Co-evolution of energy grid, electric mobility and batteries ( No . 02/2015 ) . Universidade Nova de Lisboa , IET / CICS . NOVA – Interdisciplinary Centre on Social Sciences , Faculty of Science and Technology .

  • bird , a. ( 2022 ) . Thomas Kuhn . In E.N. Zalta ( Ed . ) ,The Stanford encyclopedia of philosophy (Spring 2022 Edition). https://plato.stanford.edu/archives/spr2022/entries/thomas-kuhn/.

  • Blei, D. M., Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd international conference on machine learning ( pp . 113–120 ) . https://doi.org/10.1145/1143844.1143859

  • Blei, D. M. (2012). Probabilistic topic models. communication of the ACM , 55(4), 77–84. https://doi.org/10.1145/2133806.2133826

    Article 

    Google Scholar  

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    Google Scholar  

  • Brem Petra A. , Nylund Saeed , Roshani . ( 2023 ) . unpack the complexity of crisis innovation : a comprehensive review of ecosystem – level response to exogenous shock .Abstract Review of Managerial Science 18( 8) , 2441–2464 . https://doi.org/10.1007/s11846-023-00709-x

  • Burgin, M., Eberbach, E., & Mikkilineni, R. (2019). Cloud computing and cloud automata as a new paradigm for computation. Computer Reviews Journal, 4, 113–134.

    Google Scholar  

  • Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems , 25(6), 599–616.

    Article 

    Google Scholar  

  • Cai, Y., Lu, W., Wang, L., & Xing, W. (2015). Cloud computing research analysis using bibliometric method. International Journal of Software Engineering and Knowledge Engineering, 25(03), 551–571.

    Article 

    Google Scholar  

  • Chen, B., Tsutsui, S., Ding, Y., & Ma, F. (2017). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics , 11(4), 1175–1189. https://doi.org/10.1016/j.joi.2017.10.003

    Article 

    Google Scholar  

  • Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048–1061. https://doi.org/10.1080/09537325.2016.1268682

    Article 

    Google Scholar  

  • Coccia , M. ( 2018 ) . classification of innovation consider technological interaction .Journal of Economics Bibliography, 5( 2 ) , 76–93 . https://doi.org/10.1453/jeb.v5i2.1650

    Article 

    Google Scholar  

  • Coccia , M. ( 2018a ) . general property of the evolution of research field : a scientometric study of human microbiome evolutionary robotic and astrobiology .scientometric , 117(2), 1265–1283. https://doi.org/10.1007/s11192-018-2902-8

  • Coccia, M. (2019). What is technology and technology change? A new conception with systemic-purposeful perspective for technology analysis. Journal of Social and Administrative Sciences,  6(3), 145–169. https://doi.org/10.1453/jsas.v6i3.1957

  • Coccia, M. (2020). Destructive technologies for industrial and corporate change. In A. Farazmand (Ed.), Global encyclopedia of public administration, public policy, and governance. Cham: Springer. https://doi.org/10.1007/978-3-319-31816-5_3972-1

    Chapter 

    Google Scholar  

  • Coccia, M. (2020a). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics. scientometric , 124(1), 451–487. https://doi.org/10.1007/s11192-020-03464-y

  • Coccia , M. ( 2024a ) . converge artificial intelligence and quantum technology : accelerated growth effect in technological evolution .Technologies, 12(5), 66. https://doi.org/10.3390/technologies12050066

  • Coccia, M. (2024b). The general theory of scientific variability for technological evolution. Science, 6(2), 31. https://doi.org/10.3390/sci6020031

  • Coccia M. , Bozeman B. ( 2016 ) . Allometric model to measure and analyze the evolution of international research collaboration .scientometric , 108( 3 ) , 1065–1084 . https://doi.org/10.1007/s11192-016-2027-x

  • Coccia, M. (2021). Technological innovation. In G. Ritzer & C. Rojek (Eds.), The Blackwell encyclopedia of sociology. Wiley. https://doi.org/10.1002/9781405165518.wbeost011.pub2

    Chapter 

    Google Scholar  

  • Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, 68, 101874. https://doi.org/10.1016/j.techsoc.2022.101874

    Article 

    Google Scholar  

  • Coccia , M. 2024 . technological trajectory in quantum computing to design a quantum ecosystem for industrial change .Technology Analysis & Strategic Management, 36( 8) , 1733–1748 . https://doi.org/10.1080/09537325.2022.2110056

  • Coccia M; Roshani M. (2024). Path-breaking directions in quantum computing technology: A patent analysis with multiple techniques. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-01977-y

  • Costas, R., Corona-Sorbino, C., Robinson-Garcìa, N. (2024). Handbook of meta-research could ORCID play a key role in meta-research? Discussing new analytical possibilities to study the dynamics of science and scientists. Edward Elgar Publishing 215–232

  • Coccia M., Roshani, S. (2024a). General laws of funding for scientific citations: how citations change in funded and unfunded research between basic and applied sciences. Journal of Data and Information Science , 9(1), 1–18. https://doi.org/10.2478/jdis-2024-0005

  • Coccia, M., Roshani, S. (2024b). Research funding and citations in papers of nobel laureates in physics, chemistry and medicine, 2019-2020. Journal of Data and Information Science , 9(2), 1–25. https://doi.org/10.2478/jdis-2024-0006

  • Coccia Lili M , Wang ( 2016 ) evolution and convergence of the pattern of international scientific collaboration .Significance proceeding of the National Academy of Sciences , 113( 8) , 2057–2061 . https://doi.org/10.1073/pnas.1510820113

  • Coccia, M., Watts J. 2020. A theory of the evolution of technology: technological parasitism and the implications for innovation management. Journal of Engineering and Technology Management , 55, 101552, https://doi.org/10.1016/j.jengtecman.2019.11.003

  • Coccia , M. , Roshani S. , Mosleh M. ( 2021 ) . scientific development and new technological trajectory in sensor .Research Sensors, 21(23), 7803. https://doi.org/10.3390/s21237803

  • Coccia, M., Mosleh, M., & Roshani, S. (2024). Evolution of quantum computing: Theoretical and innovation management implications for emerging quantum industry. IEEE Transactions on Engineering Management , 71, 2270–2280. https://doi.org/10.1109/TEM.2022.3175633

    Article 

    Google Scholar  

  • Coccia, M., & Roshani, S. (2024). Evolutionary phases in emerging technologies: Theoretical and managerial implications from quantum technologies. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2024.3385116

    Article 

    Google Scholar  

  • Coccia, M., Roshani, S., & Mosleh, M. (2022). Evolution of sensor research for clarifying the dynamics and properties of future directions. Sensors, 22(23), 9419. https://doi.org/10.3390/s22239419

    Article 

    Google Scholar  

  • Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In Proceedings of the 22nd international conference on World Wide Web (pp. 249–260).

  • Cresswell, K., Hernández, A. D., Williams, R., & Sheikh, A. (2022). Key challenges and opportunities for cloud technology in health care: Semistructured interview study. JMIR Human Factors, 9( 1 ) , e31246 .

    Article 

    Google Scholar  

  • Curiac, C. D., & Micea, M. V. (2023). Identifying hot information security topics Using LDA and multivariate Mann–Kendall test. IEEE Access, 11, 18374–18384.

    Article 

    Google Scholar  

  • Cuzzola, J., Jovanović, J., Bagheri, E., & Gašević, D. (2015). Evolutionary fine-tuning of automated semantic annotation systems. Expert Systems with application , 42( 20 ) , 6864–6877 .

    Article 

    Google Scholar  

  • Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10, 4151–4166.

    Article 

    Google Scholar  

  • Dernis, H., Squicciarini, M., & de Pinho, R. (2016). Detecting the emergence of technologies and the evolution and co-development trajectories in science (DETECTS): A ‘burst ’analysis-based approach. The Journal of Technology Transfer, 41, 930–960.

    Article 

    Google Scholar  

  • Ebadi, A., Tremblay, S., Goutte, C., & Schiffauerova, A. (2020). Application of machine learning techniques to assess the trends and alignment of the funded research output. Journal of Informetrics , 14( 2 ) , 101018 .

    Article 

    Google Scholar  

  • Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide Behind the Nebula? IEEE Software, 26( 2 ) , 4–6 .

    Article 

    Google Scholar  

  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342.

    Article 

    Google Scholar  

  • Ferragina, P., & Scaiella, U. (2010). Tagme: On-the-fly annotation of short text fragments (by wikipedia entities). In Proceedings of the 19th ACM international conference on Information and knowledge management (pp. 1625–1628).

  • Ghazinoori, S., Roshani, S., Hafezi, R., & Wood, D. A. (2023). Bursting into the Public Eye: Analyzing the Development of Renewable Energy Research Interests. renewable Energy Focus , 47, 100496.

    Article 

    Google Scholar  

  • Gohr, A., Hinneburg, A., Schult, R., & Spiliopoulou, M. (2009). Topic evolution in a stream of documents. In Proceedings of the 2009 SIAM international conference on data mining (Vol. 1, pp. 859–870). https://doi.org/10.1137/1.9781611972795.74

  • Hafezi, R., Zare, S. G., Taghikhah, F. R., & Roshani, S. (2024). How Universities Study the Future: A Critical View. Futures, 103439.

    Article 

    Google Scholar  

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204( 1–4 ) , 182–196 .

    Article 

    Google Scholar  

  • Hassanzadeh, A., Namdarian, L., Majidpour, M., & Elahi, S. B. (2015). Developing a model to evaluate the impacts of science, technology and innovation foresight on policy-making. Technology Analysis & Strategic Management, 27(4), 437–460.

  • Heilig, L., & Voß, S. (2014). A scientometric analysis of cloud computing literature. IEEE Transactions on Cloud Computing , 2(3), 266–278.

    Article 

    Google Scholar  

  • Hoberg, P., Wollersheim, J. & Krcmar, H. (2012). The business perspective on cloud computing—A literature review of research on cloud computing. In AMCIS 2012 Proceedings (Vol. 5). http://aisel.aisnet.org/amcis2012/proceedings/EnterpriseSystems/5

  • Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50–57).

  • Huang, J. Y., & Chen, R. C. (2019). Exploring the intellectual structure of cloud patents using non-exhaustive overlaps. scientometric , 121(2), 739–769.

    Article 

    Google Scholar  

  • Hussain, M., & Mahmud, I. (2019). pyMannKendall: A python package for non-parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556. https://doi.org/10.21105/joss.01556

    Article 

    Google Scholar  

  • Huang, Hung-Tu., Hsu, Jia-Yen. (2017). Technology–function matrix based network analysis of cloud computing. scientometric , 113( 1 ) , 17 – 44 . https://doi.org/10.1007/s11192-017-2469-9

  • Jacobides, M. G., Brusoni, S., & Candelon, F. (2021). The evolutionary dynamics of the artificial intelligence ecosystem. Strategy Science, 6(4), 412–435.

    Article 

    Google Scholar  

  • Kale, M., & Mente, R. (2017). Impact of cloud computing on education system. International Journal of Electronics , Electrical and Computational System IJEECS , 6(11), 139–144.

    Google Scholar  

  • Kendall, M. G. (1975). Rank correlation methods (4th ed.). Charles Griffin.

    Google Scholar  

  • Kleinberg , J. ( 2002 ) . bursty and hierarchical structure in stream . InProceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining ( pp . 91–101 ) .

  • Kuhn T. ( 1962 ) .The structure of scientific revolution (1970, 2nd ed., with postscript). University of Chicago Press.

  • Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes , 25(2–3), 259–284.

    Article 

    Google Scholar  

  • Latifian, A. (2022). How does cloud computing help businesses to manage big data issues. Kybernetes: the International Journal of Systems & Cybernetics, 51(6), 1917–1948. https://doi.org/10.1108/K-05-2021-0432

    Article 

    Google Scholar  

  • Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management , 45( 2 ) , 175–194 .

    Article 

    Google Scholar  

  • Liu, Y., & Wang, T. (2022). Quality factors and performance outcome of cloud-based marketing system. Kybernetes, 51(1), 485–503. https://doi.org/10.1108/K-11-2020-0778

    Article 

    Google Scholar  

  • Liu, Z., Liu, Y., Guo, Y., & Wang, H. (2013). Progress in global parallel computing research: A bibliometric approach. scientometric , 95(3), 967–983.

    Article 

    Google Scholar  

  • Lyu, Y., Li, W., Guo, Q., & Wu, H. (2024). Mapping knowledge landscapes and emerging trends of Marburg virus: A text-mining study. Heliyon, 10(8), e29691. https://doi.org/10.1016/j.heliyon.2024.e29691

  • Madlock-Brown, C. R. (2014). A framework for emerging topic detection in biomedicine. The University of Iowa .

  • Mane, K. K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. proceeding of the National Academy of Sciences , 101( suppl_1 ) , 5287–5290 .

    Article 

    Google Scholar  

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187

  • Marrone , M. ( 2020 ) . application of entity link to identify research front and trend .scientometric , 122( 1 ) , 357–379 . https://doi.org/10.1007/s11192-019-03274-x

    Article 

    Google Scholar  

  • Marrone, M., Lemke, S., & Kolbe, L. M. (2022). Entity linking systems for literature reviews. scientometric. https://doi.org/10.1007/s11192-022-04423-5

    Article 

    Google Scholar  

  • Mell, P., & Grance, T. (2010). The NIST Definition of Cloud Computing. communication of the ACM , 53(6), 50.

    Google Scholar  

  • Mosleh, M., Roshani, S., & Coccia, M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. scientometric , 127( 4 ) , 1931–1951 . https://doi.org/10.1007/s11192-022-04300-1 .

  • Nallola, S. R., & Ayyasamy, V. (2023). Insights on cloud computing: A bibliometric analysis [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-3012428/v1

  • Nederhof, A., & Van Wijk, E. (1997). Mapping the social and behavioral sciences world-wide: Use of maps in portfolio analysis of national research efforts. scientometric , 40( 2 ) , 237–276 .

    Article 

    Google Scholar  

  • NIST. (2022). Final version of NIST cloud computing. Updated January 8, 2018. Retrieved February 2022, from https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-computing-definition-published.

  • Padilla, R. S., Milton, S. K., & Johnson, L. W. (2015). Components of service value in business-to-business cloud computing. J Cloud Comp, 4, 15. https://doi.org/10.1186/s13677-015-0040-x

    Article 

    Google Scholar  

  • Papazoglou M. P., & Vaquero L. M. (2012). Knowledge-intensive cloud services: Transforming the cloud delivery stack, knowledge service engineering handbook (pp. 449–494). Taylor & Francis Group.

  • Roshani, S., Coccia, M., Mosleh, M. (2022). Sensor technology for opening new pathways in diagnosis and therapeutics of breast lung colorectal and prostate cancer. HighTech and Innovation Journal, 3(3), 356–375. https://doi.org/10.28991/HIJ-2022-03-03-010

  • Saheb, T., Dehghani, M., & Saheb, T. (2022). Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. sustainable Computing : Informatics and Systems , 35, 100699.

    Google Scholar  

  • Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. Retrieved November 24, 2016, from https://Sci2.cns.iu.edu.

  • Sharma, D., Kumar, B., & Chand, S. (2019). A trend analysis of machine learning research with topic models and Mann–Kendall test. International Journal of Intelligent Systems and Applications., 11(2), 70–82. https://doi.org/10.5815/ijisa.2019.02.08

    Article 

    Google Scholar  

  • Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of web of science, Scopus and dimensions: A comparative analysis. scientometric , 126, 5113–5142.

    Article 

    Google Scholar  

  • Sun, X., Kaur, J., Milojevic’, S., Flammini, A., & Menczer, F. (2013). Social dynamics of science. scientific report , 3(1069), 1–6. https://doi.org/10.1038/srep01069

    Article 

    Google Scholar  

  • Wagiu , EB . , Liu , C. -M. , Palopak , Y. ( 2024 ) . mapping technological trajectory of edge computing : A citation graph analysis .IEEE Internet of Things Journal, 11(9), 16545–16560. https://doi.org/10.1109/JIOT.2024.3355056

  • Wang, Y., Agichtein, E., & Benzi, M. (2012). TM-LDA: Efficient online modeling of latent topic transitions in social media. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 123–131). https://doi.org/10.1145/2339530.2339552

  • Wang, J., & Hsu, C. C. (2021). A topic-based patent analytics approach for exploring technological trends in smart manufacturing. Journal of Manufacturing Technology Management, 32(1), 110–135.

    Article 

    Google Scholar  

  • Wang, N., Liang, H., Jia, Y., Ge, S., Xue, Y., & Wang, Z. (2016). Cloud computing research in the IS discipline: A citation/co-citation analysis. decision Support Systems , 86, 35–47.

    Article 

    Google Scholar  

  • Web of Science (WOS). (2021). Documents. Retrieved November 20, 2021, from https://www.webofscience.com/wos/woscc/basic-search

  • Xu, S., Hao, L., Yang, G., Lu, K., & An, X. (2021). A topic models based framework for detecting and forecasting emerging technologies. Technological Forecasting and Social Change, 162, 120366.

    Article 

    Google Scholar  

  • Yang, H., & Tate, M. 2012. A descriptive literature review and classification of cloud computing research. Communications of the Association for Information Systems. https://doi.org/10.17705/1CAIS.03102

  • Zhang, S., & Lu, X. X. (2009). Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. CATENA , 77( 2 ) , 130–142 .

    Article 

    Google Scholar  

  • Zhao, W., Chen, J. J., Perkins, R., et al. (2015). A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinformatics, 16(Suppl 13), S8. https://doi.org/10.1186/1471-2105-16-S13-S8

    Article 

    Google Scholar